
Automated Synthesis of Generalized Invariant
Strategies via Counterexample-guided Strategy
Refinement

Kailun Luo1, Yongmei Liu2

1.School of Cyberspace Security, Dongguan University of Technology

2.Department of Computer Science, Sun Yat-sen University

AAAI 2022

1 Two player games with safety objectives are significant

• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks

• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

1 Two player games with safety objectives are significant
• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks

• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

1 Two player games with safety objectives are significant
• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks

• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

1 Two player games with safety objectives are significant
• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks

• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

1 Two player games with safety objectives are significant
• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks
• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

1 Two player games with safety objectives are significant
• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks
• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

1 Two player games with safety objectives are significant
• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks
• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

1 Two player games with safety objectives are significant
• synthesis of reactive systems

• first-order model-checking

2 Synthesizing strategies has proved to be hard tasks
• non-elementarily decidable, Strategy Logic

• P-complete, Alternating-time Temporal Logic

• P-complete, computing winning regions for winning
memoryless strategies

3 We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

Motivation

2/21

• Multi-agent extensions of generalized planning

• Goal: synthesize one strategy for a set of games with
similar structures

• Generalized strategy −→ concrete strategy
• e.g., the two-pile Nim game

N M

Alice Bob

Generalized Strategy Synthesis

3/21

• Multi-agent extensions of generalized planning
• Goal: synthesize one strategy for a set of games with

similar structures

• Generalized strategy −→ concrete strategy
• e.g., the two-pile Nim game

N M

Alice Bob

Generalized Strategy Synthesis

3/21

• Multi-agent extensions of generalized planning
• Goal: synthesize one strategy for a set of games with

similar structures
• Generalized strategy −→ concrete strategy

• e.g., the two-pile Nim game

N M

Alice Bob

Generalized Strategy Synthesis

3/21

• Multi-agent extensions of generalized planning
• Goal: synthesize one strategy for a set of games with

similar structures
• Generalized strategy −→ concrete strategy
• e.g., the two-pile Nim game

N M

Alice Bob

Generalized Strategy Synthesis

3/21

• A general representing framework for generalized
strategy, based on the situation calculus

• A practical synthesis algorithm, based on the idea of
invariant and counterexample-guided synthesis

Contribution

4/21

• A general representing framework for generalized
strategy, based on the situation calculus

• A practical synthesis algorithm, based on the idea of
invariant and counterexample-guided synthesis

Contribution

4/21

1 Representation framework
• how to represent a game problem

• how to represent a generalized strategy

• formalize the correctness

2 Automated synthesis algorithm
• practical verification with invariants

• counterexample-guided strategy refinement

• experiments and results

Outline

5/21

• Initial database:
N(S0) 6= M(S0) , N(S0) > 0 ∨M(S0) > 0

• Precondition axioms: Poss(removeN(x), s)
≡ N(s) ≥ x ∧ x > 0

• Successor state axioms: N(do(a, s)) = y

≡ ∃x.a = removeN(x) ∧N(s) = x + y
∨N(s) = y ∧ ∃x.a = removeM(x)

A BAT represents a class (possibly infinitely many) of games

Represent Game Problems: Basic Action Theories

6/21

• Initial database:
N(S0) 6= M(S0) , N(S0) > 0 ∨M(S0) > 0

• Precondition axioms: Poss(removeN(x), s)
≡ N(s) ≥ x ∧ x > 0

• Successor state axioms: N(do(a, s)) = y

≡ ∃x.a = removeN(x) ∧N(s) = x + y
∨N(s) = y ∧ ∃x.a = removeM(x)

A BAT represents a class (possibly infinitely many) of games

Represent Game Problems: Basic Action Theories

6/21

• Initial database:
N(S0) 6= M(S0) , N(S0) > 0 ∨M(S0) > 0

• Precondition axioms: Poss(removeN(x), s)
≡ N(s) ≥ x ∧ x > 0

• Successor state axioms: N(do(a, s)) = y

≡ ∃x.a = removeN(x) ∧N(s) = x + y
∨N(s) = y ∧ ∃x.a = removeM(x)

A BAT represents a class (possibly infinitely many) of games

Represent Game Problems: Basic Action Theories

6/21

• Initial database:
N(S0) 6= M(S0) , N(S0) > 0 ∨M(S0) > 0

• Precondition axioms: Poss(removeN(x), s)
≡ N(s) ≥ x ∧ x > 0

• Successor state axioms: N(do(a, s)) = y

≡ ∃x.a = removeN(x) ∧N(s) = x + y
∨N(s) = y ∧ ∃x.a = removeM(x)

A BAT represents a class (possibly infinitely many) of games

Represent Game Problems: Basic Action Theories

6/21

Definition
Given a game BAT D, we define the finite-state axiom Dfs as the
formula ∃k∀s.exec(s) ⊃ B(k, s), where B(k, s) is the conjunction
of the following formulas:

1 ∀~x.~x > k ⊃ ¬F(~x, s), for each relational fluent F;
2 ∀~x.~x > k ⊃ f (~x, s) = 0, for each non-unary functional fluent;
3 ∀~x.f (~x, s) ≤ k, for each functional fluent f ;
4 ∀~x.~x > k ⊃ ¬Poss(A(~x), s), for each action A.

Intuition: there is a number k such that all larger numbers are
inactive throughout the game

We assume that D |= Dfs

Finite State Assumption

7/21

Definition
Given a game BAT D, we define the finite-state axiom Dfs as the
formula ∃k∀s.exec(s) ⊃ B(k, s), where B(k, s) is the conjunction
of the following formulas:

1 ∀~x.~x > k ⊃ ¬F(~x, s), for each relational fluent F;
2 ∀~x.~x > k ⊃ f (~x, s) = 0, for each non-unary functional fluent;
3 ∀~x.f (~x, s) ≤ k, for each functional fluent f ;
4 ∀~x.~x > k ⊃ ¬Poss(A(~x), s), for each action A.

Intuition: there is a number k such that all larger numbers are
inactive throughout the game

We assume that D |= Dfs

Finite State Assumption

7/21

Definition
Given a game BAT D, we define the finite-state axiom Dfs as the
formula ∃k∀s.exec(s) ⊃ B(k, s), where B(k, s) is the conjunction
of the following formulas:

1 ∀~x.~x > k ⊃ ¬F(~x, s), for each relational fluent F;
2 ∀~x.~x > k ⊃ f (~x, s) = 0, for each non-unary functional fluent;
3 ∀~x.f (~x, s) ≤ k, for each functional fluent f ;
4 ∀~x.~x > k ⊃ ¬Poss(A(~x), s), for each action A.

Intuition: there is a number k such that all larger numbers are
inactive throughout the game

We assume that D |= Dfs

Finite State Assumption

7/21

A Golog program of the form ϕ?;πa.a;ψ?

• where ϕ and ψ are first-order formulas

• πa.a denotes that there exists an action

• Intuition: whenever ϕ holds, perform any action to make ψ
hold

• Advantage: simpler structures, closely related to
memoryless strategies.

Example

N%2 = 0?;πa.a;N%2 = 1?

Postdiction Strategies

8/21

A Golog program of the form ϕ?;πa.a;ψ?

• where ϕ and ψ are first-order formulas

• πa.a denotes that there exists an action

• Intuition: whenever ϕ holds, perform any action to make ψ
hold

• Advantage: simpler structures, closely related to
memoryless strategies.

Example

N%2 = 0?;πa.a;N%2 = 1?

Postdiction Strategies

8/21

A Golog program of the form ϕ?;πa.a;ψ?

• where ϕ and ψ are first-order formulas

• πa.a denotes that there exists an action

• Intuition: whenever ϕ holds, perform any action to make ψ
hold

• Advantage: simpler structures, closely related to
memoryless strategies.

Example

N%2 = 0?;πa.a;N%2 = 1?

Postdiction Strategies

8/21

A Golog program of the form ϕ?;πa.a;ψ?

• where ϕ and ψ are first-order formulas

• πa.a denotes that there exists an action

• Intuition: whenever ϕ holds, perform any action to make ψ
hold

• Advantage: simpler structures, closely related to
memoryless strategies.

Example

N%2 = 0?;πa.a;N%2 = 1?

Postdiction Strategies

8/21

A Golog program of the form ϕ?;πa.a;ψ?

• where ϕ and ψ are first-order formulas

• πa.a denotes that there exists an action

• Intuition: whenever ϕ holds, perform any action to make ψ
hold

• Advantage: simpler structures, closely related to
memoryless strategies.

Example

N%2 = 0?;πa.a;N%2 = 1?

Postdiction Strategies

8/21

• Composite strategy δ∗S : [turn(p)?;S | ¬turn(p)?;πa.a]∗

Definition
Given a game problem P = 〈D, p, φ〉 and a postdiction strategy
S for player p, we say that S is a solution to P if

D |= ∀s∀δ.Trans∗(δ∗S ,S0, δ, s) ⊃ φ[s] ∧ ∃s′.Trans(δS , s,nil, s′).

• Configuration: (δ, s)

• Trans(δ, s, δ′, s′): a transition from configuration (δ, s) to
(δ′, s′) in one step

• Trans∗: the reflexive transitive closure of Trans

Safe postdiction Strategies

9/21

• Composite strategy δ∗S : [turn(p)?;S | ¬turn(p)?;πa.a]∗

Definition
Given a game problem P = 〈D, p, φ〉 and a postdiction strategy
S for player p, we say that S is a solution to P if

D |= ∀s∀δ.Trans∗(δ∗S ,S0, δ, s) ⊃ φ[s] ∧ ∃s′.Trans(δS , s,nil, s′).

• Configuration: (δ, s)

• Trans(δ, s, δ′, s′): a transition from configuration (δ, s) to
(δ′, s′) in one step

• Trans∗: the reflexive transitive closure of Trans

Safe postdiction Strategies

9/21

Automated Synthesis

10/21

1 The definition of safe postdiction strategies involves
second-order theorem proving

2 Invariant strategies: First-order verifiable

• Intuition: maintain a strong first-order property, no matter
how the opponent acts throughout the games

• Approximation of a safe postdiction strategy, relaxing the
requirement of reachability

Invariant Strategies

11/21

1 The definition of safe postdiction strategies involves
second-order theorem proving

2 Invariant strategies: First-order verifiable

• Intuition: maintain a strong first-order property, no matter
how the opponent acts throughout the games

• Approximation of a safe postdiction strategy, relaxing the
requirement of reachability

Invariant Strategies

11/21

1 The definition of safe postdiction strategies involves
second-order theorem proving

2 Invariant strategies: First-order verifiable
• Intuition: maintain a strong first-order property, no matter

how the opponent acts throughout the games

• Approximation of a safe postdiction strategy, relaxing the
requirement of reachability

Invariant Strategies

11/21

1 The definition of safe postdiction strategies involves
second-order theorem proving

2 Invariant strategies: First-order verifiable
• Intuition: maintain a strong first-order property, no matter

how the opponent acts throughout the games

• Approximation of a safe postdiction strategy, relaxing the
requirement of reachability

Invariant Strategies

11/21

1 Whenever it’s p’s turn to move and ϕ holds, p can execute
an action to enforce ψ:

ϕ ∧ turn(p) |=
N∨

i=1

∃~x.R[Poss(Ai(~x), s) ∧ ψ(do(Ai(~x), s))]↓

2 Whenever it’s the opponent’s turn to move and ψ holds,
any action the opponent can execute makes ϕ true:

ψ ∧ ¬turn(p) |=
N∧

i=1

∀~x.R[Poss(Ai(~x), s) ⊃ ϕ(do(Ai(~x), s))]↓

3 Both ϕ and ψ imply the safety condition φ
4 If p = P1, DS0↓ |= ϕ; otherwise DS0↓ |= ψ

Verifying ϕ?; πa.a;ψ? Being Invariant Strategies

12/21

1 Whenever it’s p’s turn to move and ϕ holds, p can execute
an action to enforce ψ:

ϕ ∧ turn(p) |=
N∨

i=1

∃~x.R[Poss(Ai(~x), s) ∧ ψ(do(Ai(~x), s))]↓

2 Whenever it’s the opponent’s turn to move and ψ holds,
any action the opponent can execute makes ϕ true:

ψ ∧ ¬turn(p) |=
N∧

i=1

∀~x.R[Poss(Ai(~x), s) ⊃ ϕ(do(Ai(~x), s))]↓

3 Both ϕ and ψ imply the safety condition φ
4 If p = P1, DS0↓ |= ϕ; otherwise DS0↓ |= ψ

Verifying ϕ?; πa.a;ψ? Being Invariant Strategies

12/21

1 Whenever it’s p’s turn to move and ϕ holds, p can execute
an action to enforce ψ:

ϕ ∧ turn(p) |=
N∨

i=1

∃~x.R[Poss(Ai(~x), s) ∧ ψ(do(Ai(~x), s))]↓

2 Whenever it’s the opponent’s turn to move and ψ holds,
any action the opponent can execute makes ϕ true:

ψ ∧ ¬turn(p) |=
N∧

i=1

∀~x.R[Poss(Ai(~x), s) ⊃ ϕ(do(Ai(~x), s))]↓

3 Both ϕ and ψ imply the safety condition φ

4 If p = P1, DS0↓ |= ϕ; otherwise DS0↓ |= ψ

Verifying ϕ?; πa.a;ψ? Being Invariant Strategies

12/21

1 Whenever it’s p’s turn to move and ϕ holds, p can execute
an action to enforce ψ:

ϕ ∧ turn(p) |=
N∨

i=1

∃~x.R[Poss(Ai(~x), s) ∧ ψ(do(Ai(~x), s))]↓

2 Whenever it’s the opponent’s turn to move and ψ holds,
any action the opponent can execute makes ϕ true:

ψ ∧ ¬turn(p) |=
N∧

i=1

∀~x.R[Poss(Ai(~x), s) ⊃ ϕ(do(Ai(~x), s))]↓

3 Both ϕ and ψ imply the safety condition φ
4 If p = P1, DS0↓ |= ϕ; otherwise DS0↓ |= ψ

Verifying ϕ?; πa.a;ψ? Being Invariant Strategies

12/21

Synthesis Algorithm: General Picture

13/21

Counterexample-guided Strategy Refinement

14/21

Counterexample-guided Strategy Refinement

15/21

Counterexample-guided Strategy Refinement

16/21

Example

17/21

Example

17/21

Example

17/21

Example

17/21

Example

17/21

Theorem
Given a game problem, if the algorithm returns a strategy, then it is a
safe strategy.

Correctness of the Algorithm

18/21

• Tools: CVC4, Z3, MCMAS

• Tactics: quantifier elimination, different SMT solvers
• Domains: combinatorial games, grid games, protocol

Experimental Results

19/21

• Tools: CVC4, Z3, MCMAS
• Tactics: quantifier elimination, different SMT solvers

• Domains: combinatorial games, grid games, protocol

Experimental Results

19/21

• Tools: CVC4, Z3, MCMAS
• Tactics: quantifier elimination, different SMT solvers
• Domains: combinatorial games, grid games, protocol

Experimental Results

19/21

• Tools: CVC4, Z3, MCMAS
• Tactics: quantifier elimination, different SMT solvers
• Domains: combinatorial games, grid games, protocol

Experimental Results

19/21

• Generalized strategy synthesis problem for a set of games
with safety goals

• Invariant strategies, maintaining invariants no matter how
the opponent acts

• A sound but incomplete method, counterexample-guided
strategy refinement, strategies via ATL model-checking

• Expressive strategies, to solve richer domains, such as
those whose formalizations need quantified formulas

Conclusion

20/21

• Generalized strategy synthesis problem for a set of games
with safety goals

• Invariant strategies, maintaining invariants no matter how
the opponent acts

• A sound but incomplete method, counterexample-guided
strategy refinement, strategies via ATL model-checking

• Expressive strategies, to solve richer domains, such as
those whose formalizations need quantified formulas

Conclusion

20/21

• Generalized strategy synthesis problem for a set of games
with safety goals

• Invariant strategies, maintaining invariants no matter how
the opponent acts

• A sound but incomplete method, counterexample-guided
strategy refinement, strategies via ATL model-checking

• Expressive strategies, to solve richer domains, such as
those whose formalizations need quantified formulas

Conclusion

20/21

• Generalized strategy synthesis problem for a set of games
with safety goals

• Invariant strategies, maintaining invariants no matter how
the opponent acts

• A sound but incomplete method, counterexample-guided
strategy refinement, strategies via ATL model-checking

• Expressive strategies, to solve richer domains, such as
those whose formalizations need quantified formulas

Conclusion

20/21

1 Non-termination of the algorithm

• consider a class of game problems for which our algorithm
will terminate

2 Invariant strategies, simple structures, whose synthesis
relies heavily on the synthesis of formulas

• consider more complicated structures in strategies, such as
finite-state automata (FSA)

Future Work

21/21

1 Non-termination of the algorithm
• consider a class of game problems for which our algorithm

will terminate

2 Invariant strategies, simple structures, whose synthesis
relies heavily on the synthesis of formulas

• consider more complicated structures in strategies, such as
finite-state automata (FSA)

Future Work

21/21

1 Non-termination of the algorithm
• consider a class of game problems for which our algorithm

will terminate

2 Invariant strategies, simple structures, whose synthesis
relies heavily on the synthesis of formulas

• consider more complicated structures in strategies, such as
finite-state automata (FSA)

Future Work

21/21

1 Non-termination of the algorithm
• consider a class of game problems for which our algorithm

will terminate

2 Invariant strategies, simple structures, whose synthesis
relies heavily on the synthesis of formulas

• consider more complicated structures in strategies, such as
finite-state automata (FSA)

Future Work

21/21

