Automated Synthesis of Generalized Invariant Strategies via Counterexample-guided Strategy Refinement

<u>Kailun Luo</u>¹, Yongmei Liu²

1.School of Cyberspace Security, Dongguan University of Technology

2.Department of Computer Science, Sun Yat-sen University

AAAI 2022

• synthesis of reactive systems

- synthesis of reactive systems
- first-order model-checking

- synthesis of reactive systems
- first-order model-checking

Ø Synthesizing strategies has proved to be hard tasks

- 1 Two player games with safety objectives are significant
 - synthesis of reactive systems
 - first-order model-checking
- Ø Synthesizing strategies has proved to be hard tasks
 - non-elementarily decidable, Strategy Logic

- 1 Two player games with safety objectives are significant
 - synthesis of reactive systems
 - first-order model-checking
- Ø Synthesizing strategies has proved to be hard tasks
 - non-elementarily decidable, Strategy Logic
 - P-complete, Alternating-time Temporal Logic

- 1 Two player games with safety objectives are significant
 - synthesis of reactive systems
 - first-order model-checking
- Ø Synthesizing strategies has proved to be hard tasks
 - non-elementarily decidable, Strategy Logic
 - P-complete, Alternating-time Temporal Logic
 - P-complete, computing winning regions for winning memoryless strategies

- 1 Two player games with safety objectives are significant
 - synthesis of reactive systems
 - first-order model-checking
- Ø Synthesizing strategies has proved to be hard tasks
 - non-elementarily decidable, Strategy Logic
 - P-complete, Alternating-time Temporal Logic
 - P-complete, computing winning regions for winning memoryless strategies
- We focus on synthesizing generalized strategies to tackle the state-space explosion problem

Multi-agent extensions of generalized planning

- Multi-agent extensions of generalized planning
- Goal: synthesize one strategy for a set of games with similar structures

- Multi-agent extensions of generalized planning
- Goal: synthesize one strategy for a set of games with similar structures
- Generalized strategy \longrightarrow concrete strategy

- Multi-agent extensions of generalized planning
- Goal: synthesize one strategy for a set of games with similar structures
- Generalized strategy \longrightarrow concrete strategy
- e.g., the two-pile Nim game

• A general representing framework for generalized strategy, based on the situation calculus

- A general representing framework for generalized strategy, based on the situation calculus
- A practical synthesis algorithm, based on the idea of invariant and counterexample-guided synthesis

Outline

Representation framework

- how to represent a game problem
- how to represent a generalized strategy
- formalize the correctness
- 2 Automated synthesis algorithm
 - practical verification with invariants
 - counterexample-guided strategy refinement
 - experiments and results

Initial database:

 $N(S_0) \neq M(S_0)$, $N(S_0) > 0 \lor M(S_0) > 0$

Initial database:

 $N(S_0) \neq M(S_0)$, $N(S_0) > 0 \lor M(S_0) > 0$

• Precondition axioms: *Poss*(*removeN*(*x*), *s*)

 $\equiv N(s) \ge x \land x > 0$

Initial database:

 $N(S_0) \neq M(S_0)$, $N(S_0) > 0 \lor M(S_0) > 0$

• Precondition axioms: Poss(removeN(x), s) $\equiv N(s) \ge x \land x > 0$

• Successor state axioms: N(do(a, s)) = y

$$\equiv \exists x.a = removeN(x) \land N(s) = x + y \\ \lor N(s) = y \land \exists x.a = removeM(x)$$

Initial database:

 $N(S_0) \neq M(S_0)$, $N(S_0) > 0 \lor M(S_0) > 0$

• Precondition axioms: Poss(removeN(x), s) $\equiv N(s) \ge x \land x > 0$

• Successor state axioms: N(do(a, s)) = y $\equiv \exists x.a = removeN(x) \land N(s) = x + y$ $\lor N(s) = y \land \exists x.a = removeM(x)$

A BAT represents a class (possibly infinitely many) of games

Definition

Given a game BAT \mathcal{D} , we define the finite-state axiom \mathcal{D}_{fs} as the formula $\exists k \forall s.exec(s) \supset B(k,s)$, where B(k,s) is the conjunction of the following formulas:

- **①** $\forall \vec{x}.\vec{x} > k \supset \neg F(\vec{x},s)$, for each relational fluent *F*;
- ② $\forall \vec{x}.\vec{x} > k \supset f(\vec{x},s) = 0$, for each non-unary functional fluent;
- **③** $\forall \vec{x}.f(\vec{x},s) ≤ k$, for each functional fluent *f*;
- ④ $\forall \vec{x}.\vec{x} > k \supset \neg Poss(A(\vec{x}),s)$, for each action *A*.

Definition

Given a game BAT \mathcal{D} , we define the finite-state axiom \mathcal{D}_{fs} as the formula $\exists k \forall s. exec(s) \supset B(k, s)$, where B(k, s) is the conjunction of the following formulas:

- **①** $\forall \vec{x}.\vec{x} > k \supset \neg F(\vec{x},s)$, for each relational fluent *F*;
- ② $\forall \vec{x}.\vec{x} > k \supset f(\vec{x},s) = 0$, for each non-unary functional fluent;
- **③** $\forall \vec{x}.f(\vec{x},s) ≤ k$, for each functional fluent *f*;
- ④ $\forall \vec{x}.\vec{x} > k \supset \neg Poss(A(\vec{x}),s)$, for each action *A*.

Intuition: there is a number *k* such that all larger numbers are inactive throughout the game

Definition

Given a game BAT \mathcal{D} , we define the finite-state axiom \mathcal{D}_{fs} as the formula $\exists k \forall s. exec(s) \supset B(k, s)$, where B(k, s) is the conjunction of the following formulas:

- **①** $\forall \vec{x}.\vec{x} > k \supset \neg F(\vec{x},s)$, for each relational fluent *F*;
- ② $\forall \vec{x}.\vec{x} > k \supset f(\vec{x},s) = 0$, for each non-unary functional fluent;
- **③** $\forall \vec{x}.f(\vec{x},s) ≤ k$, for each functional fluent *f*;
- ④ $\forall \vec{x}.\vec{x} > k \supset \neg Poss(A(\vec{x}),s)$, for each action *A*.

Intuition: there is a number *k* such that all larger numbers are inactive throughout the game

We assume that $\mathcal{D} \models \mathcal{D}_{fs}$

- where φ and ψ are first-order formulas

- where φ and ψ are first-order formulas
- $\pi a.a$ denotes that there exists an action

- where φ and ψ are first-order formulas
- $\pi a.a$ denotes that there exists an action
- Intuition: whenever φ holds, perform any action to make ψ hold

- where φ and ψ are first-order formulas
- $\pi a.a$ denotes that there exists an action
- Intuition: whenever φ holds, perform any action to make ψ hold
- Advantage: simpler structures, closely related to memoryless strategies.

- where φ and ψ are first-order formulas
- $\pi a.a$ denotes that there exists an action
- Intuition: whenever φ holds, perform any action to make ψ hold
- Advantage: simpler structures, closely related to memoryless strategies.

Example

 $N\%2 = 0?; \pi a.a; N\%2 = 1?$

Safe postdiction Strategies

Composite strategy δ^{*}_S: [turn(p)?; S | ¬turn(p)?; πa.a]*

Safe postdiction Strategies

Composite strategy δ^{*}_S: [turn(p)?; S | ¬turn(p)?; πa.a]*

Definition

Given a game problem $P = \langle D, p, \phi \rangle$ and a postdiction strategy S for player p, we say that S is a solution to P if

 $\mathcal{D} \models \forall s \forall \delta. Trans^*(\delta_{\mathcal{S}}^*, S_0, \delta, s) \supset \phi[s] \land \exists s'. Trans(\delta_{\mathcal{S}}, s, nil, s').$

- Configuration: (δ, s)
- $Trans(\delta, s, \delta', s')$: a transition from configuration (δ, s) to (δ', s') in one step
- *Trans**: the reflexive transitive closure of *Trans*

Automated Synthesis

 The definition of safe postdiction strategies involves second-order theorem proving

- The definition of safe postdiction strategies involves second-order theorem proving
- Invariant strategies: First-order verifiable

- The definition of safe postdiction strategies involves second-order theorem proving
- 2 Invariant strategies: First-order verifiable
 - Intuition: maintain a *strong* first-order property, no matter how the opponent acts throughout the games

- The definition of safe postdiction strategies involves second-order theorem proving
- Invariant strategies: First-order verifiable
 - Intuition: maintain a *strong* first-order property, no matter how the opponent acts throughout the games
 - Approximation of a safe postdiction strategy, relaxing the requirement of reachability

Whenever it's *p*'s turn to move and φ holds, *p* can execute an action to enforce ψ:

$$\varphi \wedge turn(p) \models \bigvee_{i=1}^{N} \exists \vec{x}. \mathcal{R}[Poss(A_i(\vec{x}), s) \land \psi(do(A_i(\vec{x}), s))]_{\downarrow}$$

Whenever it's *p*'s turn to move and φ holds, *p* can execute an action to enforce ψ:

$$\varphi \wedge turn(p) \models \bigvee_{i=1}^{N} \exists \vec{x}. \mathcal{R}[Poss(A_{i}(\vec{x}), s) \wedge \psi(do(A_{i}(\vec{x}), s))]_{\downarrow}$$

2 Whenever it's the opponent's turn to move and ψ holds, any action the opponent can execute makes φ true:

$$\psi \wedge \neg turn(p) \models \bigwedge_{i=1}^{N} \forall \vec{x}. \mathcal{R}[Poss(A_{i}(\vec{x}), s) \supset \varphi(do(A_{i}(\vec{x}), s))]_{\downarrow}$$

Whenever it's *p*'s turn to move and φ holds, *p* can execute an action to enforce ψ:

$$\varphi \wedge turn(p) \models \bigvee_{i=1}^{N} \exists \vec{x}. \mathcal{R}[Poss(A_{i}(\vec{x}), s) \wedge \psi(do(A_{i}(\vec{x}), s))]_{\downarrow}$$

2 Whenever it's the opponent's turn to move and ψ holds, any action the opponent can execute makes φ true:

$$\psi \wedge \neg turn(p) \models \bigwedge_{i=1}^{N} \forall \vec{x}. \mathcal{R}[Poss(A_{i}(\vec{x}), s) \supset \varphi(do(A_{i}(\vec{x}), s))]_{\downarrow}$$

(3) Both φ and ψ imply the safety condition ϕ

Whenever it's *p*'s turn to move and φ holds, *p* can execute an action to enforce ψ:

$$\varphi \wedge turn(p) \models \bigvee_{i=1}^{N} \exists \vec{x}. \mathcal{R}[Poss(A_{i}(\vec{x}), s) \wedge \psi(do(A_{i}(\vec{x}), s))]_{\downarrow}$$

2 Whenever it's the opponent's turn to move and ψ holds, any action the opponent can execute makes φ true:

$$\psi \wedge \neg turn(p) \models \bigwedge_{i=1}^{N} \forall \vec{x}. \mathcal{R}[Poss(A_{i}(\vec{x}), s) \supset \varphi(do(A_{i}(\vec{x}), s))]_{\downarrow}$$

3 Both *ϕ* and *ψ* imply the safety condition *ϕ* **4** If $p = P_1$, $\mathcal{D}_{S_0\downarrow} \models ϕ$; otherwise $\mathcal{D}_{S_0\downarrow} \models ψ$

Synthesis Algorithm: General Picture

Counterexample-guided Strategy Refinement

Counterexample-guided Strategy Refinement

Counterexample-guided Strategy Refinement

 $b + \mathcal{D}_{S_0} \Longrightarrow \{s_0, s'_0, s''_0, \ldots\}$ $\{s_0, s'_0, s''_0, \ldots\} + \mathcal{D} \Longrightarrow \{g, g'', g''', \ldots\}$

Theorem

Given a game problem, if the algorithm returns a strategy, then it is a safe strategy.

• Tools: CVC4, Z3, MCMAS

- Tools: CVC4, Z3, MCMAS
- Tactics: quantifier elimination, different SMT solvers

- Tools: CVC4, Z3, MCMAS
- Tactics: quantifier elimination, different SMT solvers
- Domains: combinatorial games, grid games, protocol

- Tools: CVC4, Z3, MCMAS
- Tactics: quantifier elimination, different SMT solvers
- Domains: combinatorial games, grid games, protocol

game	L	R+	R^{-}	В	S	T(s)
2-Nim	44	2	5	0	6	14.5
Take-away	94	3	11	1	6	43.2
Sub.	118	7	23	0	4	321.1
E.&D.	64	3	13	0	10	210.8
Mon. 2-Nim	44	1	9	0	6	26.4
Ch.2xN	44	2	12	0	14	35.6
Ch.NxN	58	-	-	-	-	-
Coloring	32	4	11	1	8	303.2
Leader	66	0	8	2	16	367.2

Table 1: Experimental results

• Generalized strategy synthesis problem for a set of games with safety goals

- Generalized strategy synthesis problem for a set of games with safety goals
- Invariant strategies, maintaining invariants no matter how the opponent acts

- Generalized strategy synthesis problem for a set of games with safety goals
- Invariant strategies, maintaining invariants no matter how the opponent acts
- A sound but incomplete method, counterexample-guided strategy refinement, strategies via ATL model-checking

- Generalized strategy synthesis problem for a set of games with safety goals
- Invariant strategies, maintaining invariants no matter how the opponent acts
- A sound but incomplete method, counterexample-guided strategy refinement, strategies via ATL model-checking
- Expressive strategies, to solve richer domains, such as those whose formalizations need quantified formulas

• consider a class of game problems for which our algorithm will terminate

- consider a class of game problems for which our algorithm will terminate
- Invariant strategies, simple structures, whose synthesis relies heavily on the synthesis of formulas

- consider a class of game problems for which our algorithm will terminate
- Invariant strategies, simple structures, whose synthesis relies heavily on the synthesis of formulas
 - consider more complicated structures in strategies, such as finite-state automata (FSA)