Automated Synthesis of Generalized Invariant
Strategies via Counterexample-guided Strategy
Refinement

Kailun Luo!, Yongmei Liu?
1.School of Cyberspace Security, Dongguan University of Technology

2.Department of Computer Science, Sun Yat-sen University

AAAT 2022

@ Two player games with safety objectives are significant

2/21

@ Two player games with safety objectives are significant
e synthesis of reactive systems

2/21

@ Two player games with safety objectives are significant
e synthesis of reactive systems

o first-order model-checking

2/21

@ Two player games with safety objectives are significant
e synthesis of reactive systems

o first-order model-checking

® Synthesizing strategies has proved to be hard tasks

2/21

@ Two player games with safety objectives are significant
e synthesis of reactive systems

o first-order model-checking

® Synthesizing strategies has proved to be hard tasks
» non-elementarily decidable, Strategy Logic

2/21

@ Two player games with safety objectives are significant
e synthesis of reactive systems

o first-order model-checking

@ Synthesizing strategies has proved to be hard tasks
» non-elementarily decidable, Strategy Logic

¢ P-complete, Alternating-time Temporal Logic

2/21

@ Two player games with safety objectives are significant
e synthesis of reactive systems

o first-order model-checking

@ Synthesizing strategies has proved to be hard tasks
» non-elementarily decidable, Strategy Logic
¢ P-complete, Alternating-time Temporal Logic

o P-complete, computing winning regions for winning
memoryless strategies

2/21

@ Two player games with safety objectives are significant
e synthesis of reactive systems

o first-order model-checking
@ Synthesizing strategies has proved to be hard tasks
» non-elementarily decidable, Strategy Logic
¢ P-complete, Alternating-time Temporal Logic
o P-complete, computing winning regions for winning

memoryless strategies

® We focus on synthesizing generalized strategies to tackle
the state-space explosion problem

2/21

Generalized Strategy Synthesis

» Multi-agent extensions of generalized planning

3/21

Generalized Strategy Synthesis

» Multi-agent extensions of generalized planning

» Goal: synthesize one strategy for a set of games with
similar structures

3/21

Generalized Strategy Synthesis

» Multi-agent extensions of generalized planning

» Goal: synthesize one strategy for a set of games with
similar structures

* Generalized strategy — concrete strategy

3/21

Generalized Strategy Synthesis

Multi-agent extensions of generalized planning

Goal: synthesize one strategy for a set of games with
similar structures

Generalized strategy — concrete strategy

e.g., the two-pile Nim game

3/21

Contribution

¢ A general representing framework for generalized
strategy, based on the situation calculus

4/21

Contribution

¢ A general representing framework for generalized
strategy, based on the situation calculus

» A practical synthesis algorithm, based on the idea of
invariant and counterexample-guided synthesis

4/21

@ Representation framework
¢ how to represent a game problem
* how to represent a generalized strategy

o formalize the correctness

@ Automated synthesis algorithm
e practical verification with invariants
¢ counterexample-guided strategy refinement

 experiments and results

5/21

Represent Game Problems: Basic Action Theories

o Initial database:
N(So) # M(Sp) , N(Sp) > 0V M(Sp) >0

6/21

Represent Game Problems: Basic Action Theories

o Initial database:
N(So) # M(Sp) , N(Sp) > 0V M(Sp) >0

» Precondition axioms: Poss(removeN(x),s)
=N(s)>xAx>0

6/21

Represent Game Problems: Basic Action Theories

o Initial database:
N(So) # M(Sp) , N(Sp) > 0V M(Sp) >0

» Precondition axioms: Poss(removeN(x),s)
=N(s)>xAx>0

* Successor state axioms: N(do(a,s)) =y

= Jx.a = removeN(x) AN(s) =x+y
VN(s) =y A Ix.a = removeM(x)

6/21

Represent Game Problems: Basic Action Theories

o Initial database:
N(So) # M(Sp) , N(Sp) > 0V M(Sp) >0

» Precondition axioms: Poss(removeN(x),s)
=N(s)>xAx>0
* Successor state axioms: N(do(a,s)) =y
= Jx.a = removeN(x) AN(s) =x+y
VN(s) =y A Ix.a = removeM(x)

A BAT represents a class (possibly infinitely many) of games

6/21

Finite State Assumption

Definition
Given a game BAT D, we define the finite-state axiom Dy as the

formula 3kVs.exec(s) D B(k,s), where B(k, s) is the conjunction
of the following formulas:

@ VXX >k D —F(%,s), for each relational fluent F;

@ VXX >k D f(X,s) = 0, for each non-unary functional fluent;
® VX.f(X,s) <k, for each functional fluent f;

@ VX.X >k D —Poss(A(X),s), for each action A.

7/21

Finite State Assumption

Definition
Given a game BAT D, we define the finite-state axiom Dy as the

formula 3kVs.exec(s) D B(k,s), where B(k, s) is the conjunction
of the following formulas:

@ VXX >k D —F(%,s), for each relational fluent F;

@ VXX >k D f(X,s) = 0, for each non-unary functional fluent;
® VX.f(X,s) <k, for each functional fluent f;

@ VX.X >k D —Poss(A(X),s), for each action A.

Intuition: there is a number k such that all larger numbers are
inactive throughout the game

7/21

Finite State Assumption

Definition
Given a game BAT D, we define the finite-state axiom Dy as the

formula 3kVs.exec(s) D B(k,s), where B(k, s) is the conjunction
of the following formulas:

@ VXX >k D —F(%,s), for each relational fluent F;

@ VXX >k D f(X,s) = 0, for each non-unary functional fluent;
® VX.f(X,s) <k, for each functional fluent f;

@ VX.X >k D —Poss(A(X),s), for each action A.

Intuition: there is a number k such that all larger numbers are
inactive throughout the game

We assume that D |= Dy

7/21

Postdiction Strategies

A Golog program of the form ¢?; ma.a;¢?

» where ¢ and v are first-order formulas

8/21

Postdiction Strategies

A Golog program of the form ¢?; ma.a;¢?

» where ¢ and v are first-order formulas

o ma.a denotes that there exists an action

8/21

Postdiction Strategies

A Golog program of the form ¢?; ma.a;¢?
» where ¢ and v are first-order formulas
o 7ma.a denotes that there exists an action

¢ Intuition: whenever ¢ holds, perform any action to make v
hold

8/21

Postdiction Strategies

A Golog program of the form ¢?; ma.a;¢?

» where ¢ and v are first-order formulas
o 7ma.a denotes that there exists an action

¢ Intuition: whenever ¢ holds, perform any action to make v
hold

» Advantage: simpler structures, closely related to
memoryless strategies.

8/21

Postdiction Strategies

A Golog program of the form ¢?; ma.a;¢?

» where ¢ and v are first-order formulas
o 7ma.a denotes that there exists an action

¢ Intuition: whenever ¢ holds, perform any action to make v
hold

» Advantage: simpler structures, closely related to
memoryless strategies.

Example

N%2 = 0?; ma.a; N%2 = 17

8/21

Safe postdiction Strategies

» Composite strategy d5: [turn(p)?; S | ~turn(p)?; ma.al*

9/21

Safe postdiction Strategies

» Composite strategy d5: [turn(p)?; S | ~turn(p)?; ma.al*

Definition
Given a game problem P = (D, p, ¢) and a postdiction strategy
S for player p, we say that S is a solution to P if

D |= VsVd.Trans* (8%, So, 9,8) D ¢[s] A I’ . Trans(ds, s, nil, s').

» Configuration: (4,s)

o Trans(d,s,d’,s'): a transition from configuration (4, s) to
(0’,5") in one step

o Trans*: the reflexive transitive closure of Trans

9/21

Automated Synthesis

10/21

Invariant Strategies

@ The definition of safe postdiction strategies involves
second-order theorem proving

11/21

Invariant Strategies

@ The definition of safe postdiction strategies involves
second-order theorem proving

® Invariant strategies: First-order verifiable

11/21

Invariant Strategies

@ The definition of safe postdiction strategies involves
second-order theorem proving

® Invariant strategies: First-order verifiable

¢ Intuition: maintain a strong first-order property, no matter
how the opponent acts throughout the games

11/21

Invariant Strategies

@ The definition of safe postdiction strategies involves
second-order theorem proving
® Invariant strategies: First-order verifiable

¢ Intuition: maintain a strong first-order property, no matter
how the opponent acts throughout the games

¢ Approximation of a safe postdiction strategy, relaxing the
requirement of reachability

11/21

Verifying 7?; ma.a;¢? Being Invariant Strategies

@ Whenever it’s p’s turn to move and ¢ holds, p can execute
an action to enforce 1):

N
o A turn(p) = \/FER[Poss(A(F),5) A (do(Ai(D),5))],
i=1

12/21

Verifying 7; ma.a;¢? Being Invariant Strategies

@ Whenever it’s p’s turn to move and ¢ holds, p can execute
an action to enforce 1):

N
o A turn(p) = \/FER[Poss(A(F),5) A (do(Ai(D),5))],
i=1

@ Whenever it’s the opponent’s turn to move and) holds,
any action the opponent can execute makes ¢ true:

N
¥ A —turn(p) = \VZR[Poss(A;(X),s) D (do(Ai(%),s))];
i=1

12/21

Verifying 7; ma.a;¢? Being Invariant Strategies

@ Whenever it’s p’s turn to move and ¢ holds, p can execute
an action to enforce 1):

N
o A turn(p) = \/FER[Poss(A(F),5) A (do(Ai(D),5))],
i=1

@ Whenever it’s the opponent’s turn to move and) holds,
any action the opponent can execute makes ¢ true:

N
¥ A —turn(p) = \VZR[Poss(A;(X),s) D (do(Ai(%),s))];
i=1

©® Both ¢ and 1) imply the safety condition ¢

12/21

Verifying 7?; ma.a;¢? Being Invariant Strategies

@ Whenever it’s p’s turn to move and ¢ holds, p can execute
an action to enforce 1):

N
o A turn(p) = \/FER[Poss(A(F),5) A (do(Ai(D),5))],
i=1

@ Whenever it’s the opponent’s turn to move and) holds,
any action the opponent can execute makes ¢ true:

N
¥ A —turn(p) = \VZR[Poss(A;(X),s) D (do(Ai(%),s))];
i=1

©® Both ¢ and 1) imply the safety condition ¢
O If p = Py, Ds,; = ; otherwise Dg,| = v

12/21

Synthesis Algorithm: General Picture

Rough
Strategy

o T . .
7 ma.a; @7 new strategy ¢'?7; ma.a; ¢’?

Y

Invariant counterexample M Strategy

Strategy? ot ma.a; ? Refinement

Y
v

13/21

Counterexample-guided Strategy Refinement

b+ Ds, = {50,050, - - -}

nm L}

{50,80,8¢s -} + D = {8,8".&

Strategies via Model Checking

i b

Strategy-reachable States

14/21

Counterexample-guided Strategy Refinement

b+ Ds, = {50,50,50- - -}

{s0,50,50:---} + D = {8,8".8",.-.}

Strategies via Model Checking

Strategy-reachable 'S!étes

A bound b
Ij

/" Next States of M

v
Positive sets: {]\[L 1‘[2) {A[li}

A N
Strategy update j*r L’
plima.a;?
f {
Negative sets: {My} {Ms,Me}

15/21

Counterexample-guided Strategy Refinement

b+ Dg, => {50,50,53,.-.}

{50,558, } + D= {g,",g" -}

Strategies via Model Checking

A bound
C M

Could not find M

Positive sets: {M1, Mz} {M;}

Strategy update

'l Ta.a;y'? . A
Negative sets: {M;} {M_;.Me,}

16/21

Postdiction strategy

17/21

Example

Postdiction strategy

Invariant strategy ?

Counterexample

17/21

Initial states

Postdiction strategy

-m Bound:1

Invariant strategy ? Ds, {N(So) # M(S0), N(So) = 1V M(So) > 1}

Counterexample

17/21

Initial states

Postdiction strategy
BAT Model-checking
Bound:1

Ds, {N(So) # M(S0), N(So) > 1V M(So) > 1} Strategy-reachable states

Invariant strategy ?

Counterexample
et @ &

17/21

17/21

Example

Invariant strategy ?

Counterexample

Refinement

e

New postdiction strategy

N%2 = 0?;ma.a;N%2 =1VM =0}

Next states
{(N=0,M=0)}

Initial states
Postdiction strategy
BAT Model-checking
Bound:1
Ds, {N(So) # M(So).N(So) = 1V M(So) > 1} Strategy-reachable states

Correctness of the Algorithm

Theorem

Given a game problem, if the algorithm returns a strategy, then it is a
safe strategy.

18/21

Experimental Results

e Tools: CVC4, Z3, MCMAS

19/21

Experimental Results

e Tools: CVC4, Z3, MCMAS

¢ Tactics: quantifier elimination, different SMT solvers

19/21

Experimental Results

e Tools: CVC4, Z3, MCMAS
¢ Tactics: quantifier elimination, different SMT solvers

¢ Domains: combinatorial games, grid games, protocol

19/21

Experimental Results

e Tools: CVC4, Z3, MCMAS
¢ Tactics: quantifier elimination, different SMT solvers

¢ Domains: combinatorial games, grid games, protocol

[game | L [[RT[R [B] S| TG |
2-Nim Ao 2 51016 14.5
Take-away 94 3 It {1 6| 432
Sub. 118 7 123 0] 4 |321.1
E.&D. 64 3 13 10|10 | 210.8
Mon. 2-Nim | 44 1 9 [0| 6 | 264
Ch.2xN +4 2 12 10| 14| 356
Ch.NxN 58 - - | -] - -
Coloring 32 + I | 1| 8 |3032
Leader 66 0 8 [2] 16 367.2

Table 1: Experimental results

19/21

Conclusion

» Generalized strategy synthesis problem for a set of games
with safety goals

20/21

Conclusion

» Generalized strategy synthesis problem for a set of games
with safety goals

¢ Invariant strategies, maintaining invariants no matter how
the opponent acts

20/21

Conclusion

» Generalized strategy synthesis problem for a set of games
with safety goals

¢ Invariant strategies, maintaining invariants no matter how
the opponent acts

¢ A sound but incomplete method, counterexample-guided
strategy refinement, strategies via ATL model-checking

20/21

Conclusion

20/21

Generalized strategy synthesis problem for a set of games
with safety goals

Invariant strategies, maintaining invariants no matter how
the opponent acts

A sound but incomplete method, counterexample-guided
strategy refinement, strategies via ATL model-checking

Expressive strategies, to solve richer domains, such as
those whose formalizations need quantified formulas

@ Non-termination of the algorithm

21/21

@ Non-termination of the algorithm

e consider a class of game problems for which our algorithm
will terminate

21/21

@ Non-termination of the algorithm

e consider a class of game problems for which our algorithm
will terminate

® Invariant strategies, simple structures, whose synthesis
relies heavily on the synthesis of formulas

21/21

@ Non-termination of the algorithm
e consider a class of game problems for which our algorithm
will terminate
® Invariant strategies, simple structures, whose synthesis
relies heavily on the synthesis of formulas

e consider more complicated structures in strategies, such as
finite-state automata (FSA)

21/21

