
Agent Abstraction via Forgetting
in the Situation Calculus

Kailun Luo1, Yongmei Liu1, Yves Lespérance2, Ziliang Lin1

1.Dept. of Computer Science, Sun Yat-sen University
2.Dept. of Electrical Engineering and Computer Science,
York University

ECAI 2020



Abstraction plays an important role in Artificial Intelligence:
• heuristic, guide the search process in classical planning

[Boddy, Fox, and Thiébaux 2007]

• method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

• technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

Agent Abstraction
[Banihashemi, De Giacomo, and Lespérance 2017]

• expressive first-order framework based on the Situation
Calculus and ConGolog

• abstraction of dynamic domains (action theories)

Background

2/13



Abstraction plays an important role in Artificial Intelligence:
• heuristic, guide the search process in classical planning

[Boddy, Fox, and Thiébaux 2007]

• method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

• technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

Agent Abstraction
[Banihashemi, De Giacomo, and Lespérance 2017]

• expressive first-order framework based on the Situation
Calculus and ConGolog

• abstraction of dynamic domains (action theories)

Background

2/13



Abstraction plays an important role in Artificial Intelligence:
• heuristic, guide the search process in classical planning

[Boddy, Fox, and Thiébaux 2007]

• method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

• technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

Agent Abstraction
[Banihashemi, De Giacomo, and Lespérance 2017]

• expressive first-order framework based on the Situation
Calculus and ConGolog

• abstraction of dynamic domains (action theories)

Background

2/13



Abstraction plays an important role in Artificial Intelligence:
• heuristic, guide the search process in classical planning

[Boddy, Fox, and Thiébaux 2007]

• method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

• technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

Agent Abstraction
[Banihashemi, De Giacomo, and Lespérance 2017]

• expressive first-order framework based on the Situation
Calculus and ConGolog

• abstraction of dynamic domains (action theories)

Background

2/13



A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping:

• the refinement mapping specifies abstraction:
• HL fluent ↪→ LL formula, e.g.,

all_block_ontable(s) ↪→ ∀x.ontable(x, s)

• HL action ↪→ LL program, e.g.,

move_to_table(x) ↪→ πy.unstack(x, y); putdown(x)

• with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

• based on m-bisimulation, sound abstraction and complete
abstraction between HL and LL theories

• sound abstraction: reasoning at HL ↪→ reasoning at LL

Agent abstraction [Banihashemi et al. 2017]

3/13



A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping:

• the refinement mapping specifies abstraction:
• HL fluent ↪→ LL formula, e.g.,

all_block_ontable(s) ↪→ ∀x.ontable(x, s)

• HL action ↪→ LL program, e.g.,

move_to_table(x) ↪→ πy.unstack(x, y); putdown(x)

• with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

• based on m-bisimulation, sound abstraction and complete
abstraction between HL and LL theories

• sound abstraction: reasoning at HL ↪→ reasoning at LL

Agent abstraction [Banihashemi et al. 2017]

3/13



A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping:

• the refinement mapping specifies abstraction:
• HL fluent ↪→ LL formula, e.g.,

all_block_ontable(s) ↪→ ∀x.ontable(x, s)

• HL action ↪→ LL program, e.g.,

move_to_table(x) ↪→ πy.unstack(x, y); putdown(x)

• with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

• based on m-bisimulation, sound abstraction and complete
abstraction between HL and LL theories

• sound abstraction: reasoning at HL ↪→ reasoning at LL

Agent abstraction [Banihashemi et al. 2017]

3/13



A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping:

• the refinement mapping specifies abstraction:
• HL fluent ↪→ LL formula, e.g.,

all_block_ontable(s) ↪→ ∀x.ontable(x, s)

• HL action ↪→ LL program, e.g.,

move_to_table(x) ↪→ πy.unstack(x, y); putdown(x)

• with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

• based on m-bisimulation, sound abstraction and complete
abstraction between HL and LL theories

• sound abstraction: reasoning at HL ↪→ reasoning at LL

Agent abstraction [Banihashemi et al. 2017]

3/13



A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping:

• the refinement mapping specifies abstraction:
• HL fluent ↪→ LL formula, e.g.,

all_block_ontable(s) ↪→ ∀x.ontable(x, s)

• HL action ↪→ LL program, e.g.,

move_to_table(x) ↪→ πy.unstack(x, y); putdown(x)

• with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

• based on m-bisimulation, sound abstraction and complete
abstraction between HL and LL theories

• sound abstraction: reasoning at HL ↪→ reasoning at LL

Agent abstraction [Banihashemi et al. 2017]

3/13



LL Action 
Theory

Refinement 
Mapping+

HL Action 
Theory

?

Problem

4/13



LL Action 
Theory

Refinement 
Mapping+

HL Action 
Theory

Forgetting

Problem

4/13



• Motivation: progression, i.e., update the knowledge base
after an action was performed

• Intuition: omit the information of the symbols while
retaining all the facts that are ’irrelevant’ to these symbols

• Forgetting a predicate in a FO theory : not FO-definable
[Lin and Reiter 1994]

• Forgetting a proposition in the propositional case is
computable

Forgetting [Lin and Reiter 1994]

5/13



• Motivation: progression, i.e., update the knowledge base
after an action was performed

• Intuition: omit the information of the symbols while
retaining all the facts that are ’irrelevant’ to these symbols

• Forgetting a predicate in a FO theory : not FO-definable
[Lin and Reiter 1994]

• Forgetting a proposition in the propositional case is
computable

Forgetting [Lin and Reiter 1994]

5/13



Given a LL action theory, and a refinement mapping, we show

1 conditions: abstractions are representable by deterministic
action theories and (Markovian) basic action theories

2 how to compute abstractions (HL theories) via forgetting

Contribution

6/13



• Progression via forgetting:

Relations between old 
facts and new facts (SSA)

Old facts

New facts

• Abstraction via forgetting:

Relations between LL 
theory and HL theory

LL theory

HL theory

General idea

7/13



• Progression via forgetting:

Relations between old 
facts and new facts (SSA)

Old facts

New facts

• Abstraction via forgetting:

Relations between LL 
theory and HL theory

LL theory

HL theory

General idea

7/13



Theorem
Given a low-level theory Dl and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(Dl ∪ D′una ∪ Dm;Al ∪ Fl ∪ {B})

is a sound and complete abstraction of Dl.

• NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

• D′una: LL and HL actions all stand for different actions

• Dm: relation between LL and HL theories, axiomatization
of m-bisimulation

• Al: LL actions; Fl: LL fluents

Characterize abstraction via forgetting

8/13



Theorem
Given a low-level theory Dl and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(Dl ∪ D′una ∪ Dm;Al ∪ Fl ∪ {B})

is a sound and complete abstraction of Dl.

• NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

• D′una: LL and HL actions all stand for different actions

• Dm: relation between LL and HL theories, axiomatization
of m-bisimulation

• Al: LL actions; Fl: LL fluents

Characterize abstraction via forgetting

8/13



Theorem
Given a low-level theory Dl and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(Dl ∪ D′una ∪ Dm;Al ∪ Fl ∪ {B})

is a sound and complete abstraction of Dl.

• NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

• D′una: LL and HL actions all stand for different actions

• Dm: relation between LL and HL theories, axiomatization
of m-bisimulation

• Al: LL actions; Fl: LL fluents

Characterize abstraction via forgetting

8/13



Theorem
Given a low-level theory Dl and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(Dl ∪ D′una ∪ Dm;Al ∪ Fl ∪ {B})

is a sound and complete abstraction of Dl.

• NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

• D′una: LL and HL actions all stand for different actions

• Dm: relation between LL and HL theories, axiomatization
of m-bisimulation

• Al: LL actions; Fl: LL fluents

Characterize abstraction via forgetting

8/13



• The result is a complex second-order theory

• may not be representable as a basic action theory (BAT)

• BATs have the form Σ ∪ Duna ∪ Dap ∪ Dss ∪ DS0

• Compute abstractions in the form of BATs via forgetting?
• We can compute each part separately

But...

9/13



• The result is a complex second-order theory
• may not be representable as a basic action theory (BAT)

• BATs have the form Σ ∪ Duna ∪ Dap ∪ Dss ∪ DS0

• Compute abstractions in the form of BATs via forgetting?
• We can compute each part separately

But...

9/13



• The result is a complex second-order theory
• may not be representable as a basic action theory (BAT)

• BATs have the form Σ ∪ Duna ∪ Dap ∪ Dss ∪ DS0

• Compute abstractions in the form of BATs via forgetting?
• We can compute each part separately

But...

9/13



• The result is a complex second-order theory
• may not be representable as a basic action theory (BAT)

• BATs have the form Σ ∪ Duna ∪ Dap ∪ Dss ∪ DS0

• Compute abstractions in the form of BATs via forgetting?

• We can compute each part separately

But...

9/13



• The result is a complex second-order theory
• may not be representable as a basic action theory (BAT)

• BATs have the form Σ ∪ Duna ∪ Dap ∪ Dss ∪ DS0

• Compute abstractions in the form of BATs via forgetting?
• We can compute each part separately

But...

9/13



Compute Dh
S0

, Dh
ap and Dh

ss separately

Theorem
Given a low-level BAT Dl and a Markovian refinement
mapping m, let T be Σ ∪ Dh

una ∪ Dh
S0
∪ Dh

ap ∪ Dh
ss, where

• Dh
S0

.
= forget(DS0 ∪ Φm[S0];Fl);

• Dh
ap contains the set of sentences: for any A ∈ Ah,

Poss(A(~x), s) ≡ forget(prog[Init(s), π∗m]
∧R[>(s),m(A)(~x)] ∧ Φm[s];Fl);

• Dh
ss contains: for any A ∈ Ah and F ∈ Fh,

F(~y, do(A(~x), s)) ≡ forget(prog[Init(s), π∗m]
∧R[F(~y, s),m(A)(~x)] ∧ Φm[s];Fl).

Then T is a sound and complete abstraction of Dl.

Markov property: the executability conditions and the effects of
actions are fully determined by the present state of the system

Compute abstraction via forgetting

10/13



Compute Dh
S0

, Dh
ap and Dh

ss separately

Theorem
Given a low-level BAT Dl and a Markovian refinement
mapping m, let T be Σ ∪ Dh

una ∪ Dh
S0
∪ Dh

ap ∪ Dh
ss, where

• Dh
S0

.
= forget(DS0 ∪ Φm[S0];Fl);

• Dh
ap contains the set of sentences: for any A ∈ Ah,

Poss(A(~x), s) ≡ forget(prog[Init(s), π∗m]
∧R[>(s),m(A)(~x)] ∧ Φm[s];Fl);

• Dh
ss contains: for any A ∈ Ah and F ∈ Fh,

F(~y, do(A(~x), s)) ≡ forget(prog[Init(s), π∗m]
∧R[F(~y, s),m(A)(~x)] ∧ Φm[s];Fl).

Then T is a sound and complete abstraction of Dl.

Markov property: the executability conditions and the effects of
actions are fully determined by the present state of the system

Compute abstraction via forgetting

10/13



forget(prog[Init(s), π∗m] ∧R[>(s),m(A)(~x)] ∧ Φm[s];Fl)

1 prog[Init(s), π∗m] traverses all m-reachable situations
(state-constraint-like formula)

2 R[>(s),m(A)(~x)] computes the executable condition for
program m(A)

3 Φm[s] denotes relations between HL and LL fluents

In the propositional case, Poss(A(~x), s) is always
computable

Construct HL action precondition Poss(A(~x), s)

11/13



forget(prog[Init(s), π∗m] ∧R[>(s),m(A)(~x)] ∧ Φm[s];Fl)

1 prog[Init(s), π∗m] traverses all m-reachable situations
(state-constraint-like formula)

2 R[>(s),m(A)(~x)] computes the executable condition for
program m(A)

3 Φm[s] denotes relations between HL and LL fluents

In the propositional case, Poss(A(~x), s) is always
computable

Construct HL action precondition Poss(A(~x), s)

11/13



Given a LL action theory and a refinement mapping:

• how to characterize abstractions via forgetting under the
non-deterministic uniform condition

• how to compute abstractions of the form BATs under the
Markovian restriction (propositional case, computable)

Future work:

• extensions to HL theories that involve non-deterministic
and non-Markovian actions

• sufficient conditions under which abstractions are always
FO-definable

• application of agent abstraction: in planning, provide a
mapping as a guide

• study of automated generation of these mappings

Conclusion & Future work

12/13



Given a LL action theory and a refinement mapping:

• how to characterize abstractions via forgetting under the
non-deterministic uniform condition

• how to compute abstractions of the form BATs under the
Markovian restriction (propositional case, computable)

Future work:

• extensions to HL theories that involve non-deterministic
and non-Markovian actions

• sufficient conditions under which abstractions are always
FO-definable

• application of agent abstraction: in planning, provide a
mapping as a guide

• study of automated generation of these mappings

Conclusion & Future work

12/13



Given a LL action theory and a refinement mapping:

• how to characterize abstractions via forgetting under the
non-deterministic uniform condition

• how to compute abstractions of the form BATs under the
Markovian restriction (propositional case, computable)

Future work:

• extensions to HL theories that involve non-deterministic
and non-Markovian actions

• sufficient conditions under which abstractions are always
FO-definable

• application of agent abstraction: in planning, provide a
mapping as a guide

• study of automated generation of these mappings

Conclusion & Future work

12/13



Thank you!

13/13


