Agent Abstraction via Forgetting
in the Situation Calculus

Kailun Luo!, Yongmei Liu!, Yves Lespérance?, Ziliang Lin!
1.Dept. of Computer Science, Sun Yat-sen University

2.Dept. of Electrical Engineering and Computer Science,
York University

ECAI 2020



Background

Abstraction plays an important role in Artificial Intelligence:

¢ heuristic, guide the search process in classical planning
[Boddy, Fox, and Thiébaux 2007]

» method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

« technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

2/13



Background

Abstraction plays an important role in Artificial Intelligence:

¢ heuristic, guide the search process in classical planning
[Boddy, Fox, and Thiébaux 2007]

» method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

« technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

Agent Abstraction
[Banihashemi, De Giacomo, and Lespérance 2017]

2/13



Background

Abstraction plays an important role in Artificial Intelligence:

¢ heuristic, guide the search process in classical planning
[Boddy, Fox, and Thiébaux 2007]

» method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

« technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

Agent Abstraction
[Banihashemi, De Giacomo, and Lespérance 2017]

 expressive first-order framework based on the Situation
Calculus and ConGolog

2/13



Background

Abstraction plays an important role in Artificial Intelligence:

¢ heuristic, guide the search process in classical planning
[Boddy, Fox, and Thiébaux 2007]

» method, form general solutions in generalized planning
[Srivastava, Immerman, and Zilberstein 2008]

« technique, tackle state-space explosion in agent program
verification [Mo, Li, and Liu 2016]

Agent Abstraction
[Banihashemi, De Giacomo, and Lespérance 2017]

 expressive first-order framework based on the Situation
Calculus and ConGolog

¢ abstraction of dynamic domains (action theories)

2/13



Agent abstraction [Banihashemi et al. 2017]

A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping;:

3/13



Agent abstraction [Banihashemi et al. 2017]

A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping;:

e the refinement mapping specifies abstraction:
o HL fluent — LL formula, e.g.,
all_block_ontable(s) — Vx.ontable(x, s)

e HL action — LL program, e.g.,

move_to_table(x) — wy.unstack(x, y); putdown(x)

3/13



Agent abstraction [Banihashemi et al. 2017]

A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping;:

e the refinement mapping specifies abstraction:
o HL fluent — LL formula, e.g.,
all_block_ontable(s) — Vx.ontable(x, s)

e HL action — LL program, e.g.,

move_to_table(x) — wy.unstack(x, y); putdown(x)

¢ with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

3/13



Agent abstraction [Banihashemi et al. 2017]

A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping;:

e the refinement mapping specifies abstraction:
o HL fluent — LL formula, e.g.,
all_block_ontable(s) — Vx.ontable(x, s)

e HL action — LL program, e.g.,

move_to_table(x) — wy.unstack(x, y); putdown(x)

¢ with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

* based on m-bisimulation, sound abstraction and complete
abstraction between HL and LL theories

3/13



Agent abstraction [Banihashemi et al. 2017]

A high-level (HL) action theory, a low-level (LL) action theory
and a refinement mapping;:
e the refinement mapping specifies abstraction:
o HL fluent — LL formula, e.g.,
all_block_ontable(s) — Vx.ontable(x, s)

e HL action — LL program, e.g.,

move_to_table(x) — wy.unstack(x, y); putdown(x)

¢ with the refinement mapping, m-bisimulation (similarity)
between HL and LL models

* based on m-bisimulation, sound abstraction and complete
abstraction between HL and LL theories

» sound abstraction: reasoning at HL — reasoning at LL
3/13



LL Action
Theory

Refinement
Mapping

HL Action

Theory

4/13



LL Action Refinement

Theory Mapping

Forgetting

HL Action

Theory

4/13



Forgetting [Lin and Reiter 1994]

* Motivation: progression, i.e., update the knowledge base
after an action was performed

¢ Intuition: omit the information of the symbols while
retaining all the facts that are “irrelevant’ to these symbols

5/13



Forgetting [Lin and Reiter 1994]

* Motivation: progression, i.e., update the knowledge base
after an action was performed

¢ Intuition: omit the information of the symbols while
retaining all the facts that are “irrelevant’ to these symbols

¢ Forgetting a predicate in a FO theory : not FO-definable
[Lin and Reiter 1994]

 Forgetting a proposition in the propositional case is
computable

5/13



Contribution

Given a LL action theory, and a refinement mapping, we show

@ conditions: abstractions are representable by deterministic
action theories and (Markovian) basic action theories

® how to compute abstractions (HL theories) via forgetting

6/13



 Progression via forgetting:

| Odfacts _puuy

Relations between old
facts and new facts (SSA)

forgetting old facts

7/13



General idea

 Progression via forgetting:

| Odfacts _puuy

Relations between old
facts and new facts (SSA)
» Abstraction via forgetting:

| LLtheoy _ puy

Relations between LL
theory and HL theory

forgetting old facts

forgetting LL language
3 . aa HL theory

7/13



Characterize abstraction via forgetting

Theorem

Given a low-level theory D; and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(D; U D, UDy; AU F U {B})

is a sound and complete abstraction of D;.

o NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

8/13



Characterize abstraction via forgetting

Theorem

Given a low-level theory D; and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(D; U D), UDy; A U F U {B})

is a sound and complete abstraction of D;.

o NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

e D,,.: LL and HL actions all stand for different actions

8/13



Characterize abstraction via forgetting

Theorem
Given a low-level theory D; and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(D; U D,,,, U Dyy; A U Fr U {B})

is a sound and complete abstraction of D;.

o NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

e D,,.: LL and HL actions all stand for different actions

e D,,: relation between LL and HL theories, axiomatization
of m-bisimulation

8/13



Characterize abstraction via forgetting

Theorem
Given a low-level theory D; and a non-deterministic uniform
(NDU) refinement mapping m, we have that

forget(D; U D), UDy; A U F U {B})

is a sound and complete abstraction of D;.

o NDU: different executions of programs at the LL should be
indistinguishable at the HL (deterministic action)

e D,,.: LL and HL actions all stand for different actions

e D,,: relation between LL and HL theories, axiomatization
of m-bisimulation

o A;: LL actions; F;: LL fluents
8/13



¢ The result is a complex second-order theory

9/13



¢ The result is a complex second-order theory
¢ may not be representable as a basic action theory (BAT)

9/13



¢ The result is a complex second-order theory
¢ may not be representable as a basic action theory (BAT)

* BATs have the form ¥ U Dy, U Dyp U Dgs U Ds,

9/13



¢ The result is a complex second-order theory
¢ may not be representable as a basic action theory (BAT)

* BATs have the form ¥ U Dy, U Dyp U Dgs U Ds,

¢ Compute abstractions in the form of BATs via forgetting?

9/13



¢ The result is a complex second-order theory
¢ may not be representable as a basic action theory (BAT)

* BATs have the form ¥ U Dy, U Dyp U Dgs U Ds,

¢ Compute abstractions in the form of BATs via forgetting?
* We can compute each part separately

9/13



Compute abstraction via forgetting

Compute ’Dho, Dlgp and DI separately

Theorem
Given a low-level BAT D; and a Markovian refinement
mapping m, let T be ¥ U Dﬁm U Dgo U Dé‘p U Dﬁ’s, where
DZO = forget(Ds, U ®,,[Sol; F1);
Df{p contains the set of sentences: for any A € Ay,
Poss(A(X),s) = forget(prog[Init(s), 7]
AR[T (s), m(A)(X)] A m[s]; F1);
D contains: for any A € A, and F € Fj,

F(ij,do(A(X),s)) = forget(prog[Init(s), m},]
ARIE(Y,s), m(A)(X)] A us]; F1).

Then T is a sound and complete abstraction of D;.

Markov property: the executability conditions and the effects of
10,13actions are fully determined by the present state of the system



Compute abstraction via forgetting

Compute ’Dho, Dlgp and DI separately

Theorem

Given a low-level BAT D; and a Markovian refinement
mapping m, let T be X U D}, U Dgo U Dé‘p U DI, where

DI = forget(Ds, U ®[Sol; F1);

Df{p contains the set of sentences: for any A € Ay,

D contains: for any A € A, and F € Fj,

F(ij,do(A(X),s)) = forget(prog[Init(s), m},]
ARIE(Y,s), m(A)(X)] A us]; F1).

Then T is a sound and complete abstraction of D;.

Markov property: the executability conditions and the effects of
10,13actions are fully determined by the present state of the system



Construct HL action precondition Poss(A(X), s)

forget(prog(Init(s), my] AR[T (s), m(A)(X)] A P [s]; F1)
@ progllnit(s), m,| traverses all m-reachable situations
(state-constraint-like formula)

® R[T(s),m(A)(X)] computes the executable condition for
program m(A)

® @,,[s] denotes relations between HL and LL fluents

11/13



Construct HL action precondition Poss(A(X), s)

forget(prog(Init(s), my] AR[T (s), m(A)(X)] A P [s]; F1)
@ progllnit(s), m,| traverses all m-reachable situations
(state-constraint-like formula)

® R[T(s),m(A)(X)] computes the executable condition for
program m(A)

® @,,[s] denotes relations between HL and LL fluents

In the propositional case, Poss(A(X), s) is always
computable

11/13



Conclusion & Future work

Given a LL action theory and a refinement mapping:

* how to characterize abstractions via forgetting under the
non-deterministic uniform condition

* how to compute abstractions of the form BATs under the
Markovian restriction (propositional case, computable)

12/13



Conclusion & Future work

Given a LL action theory and a refinement mapping:

* how to characterize abstractions via forgetting under the
non-deterministic uniform condition

* how to compute abstractions of the form BATs under the
Markovian restriction (propositional case, computable)

Future work:

e extensions to HL theories that involve non-deterministic
and non-Markovian actions

« sufficient conditions under which abstractions are always
FO-definable

12/13



Conclusion & Future work

Given a LL action theory and a refinement mapping:

* how to characterize abstractions via forgetting under the
non-deterministic uniform condition

* how to compute abstractions of the form BATs under the
Markovian restriction (propositional case, computable)

Future work:

e extensions to HL theories that involve non-deterministic
and non-Markovian actions

« sufficient conditions under which abstractions are always
FO-definable

¢ application of agent abstraction: in planning, provide a
mapping as a guide
¢ study of automated generation of these mappings
12/13



Thank you!

13/13



