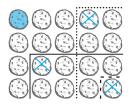
Automatic Verification of FSA Strategies via Counterexample-Guided Local Search for Invariants

<u>Kailun Luo</u>, Yongmei Liu Dept. of Computer Science, Sun Yat-sen University

August 12, 2019

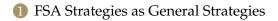
Motivation

- Strategy representation and reasoning receives much attention in KRR, e.g., Alternating-time Temporal Logic (ATL) and Strategy Logic (SL).
- Situation calculus game structure [De Giacomo, Lespérance, and Pearce 2010], automatic verification of Golog programs [Li and Liu 2015; Mo, Li, and Liu 2016]
- We consider general strategy representation and its automatic verification, e.g., see the Chomp game:



- Two-player, turn-based
- Size: NxM, top left: poisoned
- Rule: eat a cookie, together with all cookies to the right or below it.

A set of games + a general strategy \Rightarrow Is it a winning strategy for all the games?



Automatic Verification

The Situation Calculus [John McCarthy 1969] (SitCal) is a many-sorted first-order logical language for representing dynamic worlds:

- Action: function, e.g., *eat*(*p*, *x*, *y*)
- Situation: action sequence, e.g., S_0 and $do(a, S_0)$
- Fluent: special predicate, e.g., *ch*(*x*, *y*, *s*)

Based on SitCal, a basic action theory [Reiter 2001] (BAT) \mathcal{D}

• consist five parts:

 $\Sigma \cup \mathcal{D}_{ap} \cup \mathcal{D}_{ss} \cup \mathcal{D}_{una} \cup \mathcal{D}_{S_0}$

• represents a class (possibly infinite many) of games

BAT represents a class of games

Take Chomp NxN for example:

• Initial database:

 $ch(x, y, S_0) \equiv 0 < x \le N \land 0 < y \le M, N = M$

- Precondition axioms: Poss(eat(p, x, y), s) $\equiv turn(p, s) \land ch(x, y, s)$
- Successor state axioms: ch(x, y, do(a, s))

$$\equiv \exists p, i, j.a = eat(p, i, j) \land (i > x \lor j > y)$$

Additional axioms:

 $win(p,s) \doteq turn(p);$ $end(s) \doteq \neg ch(1,1,s)$

- An FSA strategies is a finite state automata except that its edge labels are single-step complex actions.
- FSA strategies represent general strategies, e.g.,

Strategy for Chomp $N \times N$ FSA strategy representation

• eat position (2,2)

$$(q_0) \xrightarrow{eat(P_1,2,2)} (q_1) \xrightarrow{\tau} \tau$$

• If the opponent eat (*x*, *y*), eat (*y*, *x*)

$$\tau: \pi(x, y).last(x, y)?; eat(P_1, y, x)$$

Winning strategy

- Complete strategy: always has a move until game ends;
- Composite strategy: all the possible plays between players;
- *πa.a* strategy: do any possible action;
- $T_S^*(q, s, q', s')$: in (q, s) follow *S*, then (q', s') will be reached;

Definition

Given an BAT D and a complete FSA strategy *S* for player *p*, we say *S* is a winning strategy if the composition *C* of *S* and $\pi a.a$ strategy satisfies (second order theorem-proving task)

 $\mathcal{D} \models \forall q, s. T^*_C(Q_0, S_0, q, s) \land end(s) \supset win(p, s).$

Intuition: FSA strategy *S* is winning if with *S*, player *p* always wins when the opponent adopts the $\pi a.a$ strategy.

Automatic Verification

From second order to first order:

- Let X be a labelling function: labels each FSA state with a first-order formula. (it characterizes state information of situations)
- \mathcal{X} is a sound invariant for strategy *S* if
 - Invariant: for any edge $q \xrightarrow{\tau} q'$ in strategy *S*,

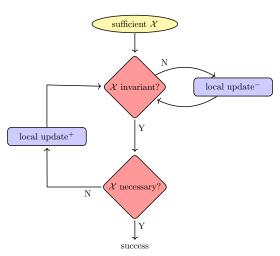
 $\mathcal{D} \models \forall s, s'. \mathcal{X}(q)[s] \land \textit{Do}(\tau, s, s') \supset \mathcal{X}(q')[s'].$

• Necessary: (Let Q_0 be the starting state of strategy S) $\mathcal{D}_{S_0} \models \mathcal{X}(Q_0)[S_0].$

• Sufficient: for each state *q* in strategy *S*,

 $\mathcal{D} \models \mathcal{X}(q)[s] \supset [end(s) \supset win(p,s)].$

Find sound invariant \mathcal{X}



A formula $\mathcal{X}(q)$ has the form $\forall^*.c_1 \land \ldots \land c_n$ (c_i is a clause)

local update[–] wrt model *M*

Because $\exists c_i \text{ s.t. } M \nvDash c_i \Longrightarrow$ $M \nvDash \mathcal{X}(q)$, we modify a clause to **exclude** model *M*

local update⁺ wrt model *M*

Because $\forall c_i \text{ s.t. } M \vDash c_i \Longrightarrow$ $M \vDash \mathcal{X}(q)$, we modify all clauses to **include** model *M*

- Local update (when updating *c_i*): Just 'flip' a few predicates inside *c_i*, *e.g.*, ∀*(*P*₁ ∨ *P*₂ ∨ *P*₃) → ∀*(*P*₁ ∨ *P*₂ ∨ *P*₄).
- Predicates are extracted from specifications, and of the form $t = f(\vec{t})$ or $P(\vec{t})$, where \vec{t} are terms, f is a function and P is a predicate.
- Use at most *m* ≥ 2 different variables *x*₁,..., *x_m* in each generated predicate.

Experimental results

- SMT solver Z3 for first-order reasoning.
- Combinatorial games and planning domains are tested.

Name	C	P	U	U ⁺	В	R	T(s)
PickS123	3	59	3	3	0	0	7.3
PickS134	3	65	3	3	0	0	10.6
$chp 2 \times N$	4	41	46	17	5	2	817.6
chp N×N	4	58	11	4	0	0	99.9
Clobber*	3	92	53	11	13	2	1198.6
Clobber	3	92	-	-	-	-	-
Colouring	3	44	38	13	0	9	188.7
1d	3	34	4	3	0	0	6.2
Arith	3	34	5	3	0	0	6.5
Find	3	50	3	4	0	0	13.8
Sort	3	59	20	10	3	0	540.9
Add	4	41	7	2	0	0	8.5
PrizeA1	5	49	61	5	1	0	1300.1

Conclusion

- Provide a natural representation for general strategies.
- Propose a sound but incomplete method for verifying whether an FSA strategy is a winning strategy.
- Limitation: invariants considered are of the form CNF formula where variables are universally quantified.

Future works:

- Consider more expressive invariants which allow existential quantification;
- Explore automatic synthesis of FSA strategies.

Thank you for your listening!